[ad_1]
1.1BriefReviewonMathieuequation
Mathieu equation isa specialcase of a linear second order homogeneousdifferentialequation(Ruby1995).Theequationwasfirstdiscussedin1868,byEmileLeonardMathieuinconnectionwithproblemofvibrationsinellipticalmembrane.HedevelopedtheleadingtermsoftheseriessolutionknownasMathieufunctionoftheellipticalmembranes.Adecadelater,HeinedefinedtheperiodicMathieuAngularFunctionsofintegerorderasFouriercosineandsineseries;furthermore,withoutevaluatingthecorrespondingcoefficient,Heobtainedatranscendentalequationforcharacteristicnumbersexpressedintermsofinfinitecontinuedfractions;andalsoshowedthatonesetofperiodicfunctionsofintegerordercouldbeinaseriesofBesselfunction(Chaos-CadorandLey-Koo2002).Intheearly1880’s,FloquetwentfurthertopublishatheoryandthusasolutiontotheMathieudifferentialequation;hisworkwasnamedafterhimas,‘Floquet’sTheorem’or‘Floquet’sSolution’.StephensonusedanapproximateMathieuequation,andproved,thatitispossibletostabilizetheupperpositionofarigidpendulumbyvibratingitspivotpointverticallyataspecifichighfrequency.(StépánandInsperger2003).Thereexistsanextensiveliteratureontheseequations;andinparticular,awell-highexhaustivecompendiumwasgivenbyMc-Lachlan(1947).TheMathieufunctionwasfurtherinvestigatedbynumberofresearcherswhofoundaconsiderableamountofmathematicalresultsthatwerecollectedmorethan60yearsagobyMc-Lachlan(Gutiérrez-Vegaaetal2002).Whittakerandotherscientistderivedin1900sderivedthehigher-ordertermsoftheMathieudifferentialequation.AvarietyoftheequationexistintextbookwrittenbyAbramowitzandStegun(1964).Mathieudifferentialequationoccursintwomaincategoriesofphysicalproblems.First,applicationsinvolvingellipticalgeometriessuchas,analysisofvibratingmodes2inellipticmembrane,thepropagatingmodesofellipticpipesandtheoscillationsofwaterinalakeofellipticshape.Mathieuequationarisesafterseparatingthewaveequation using ellipticcoordinates.Secondly,problemsinvolving periodicmotionexamplesare,thetrajectoryofan electron in aperiodicarrayofatoms,themechanicsofthequantumpendulumandtheoscillationoffloatingvessels.ThecanonicalformfortheMathieudifferentialequationisgivenby+ y =0, (1.1)dy 2dx2 [a-2qcos(2x)](x)whereaandqarerealconstantsknownasthecharacteristicvalueandparameterrespectively.Closely related to the Mathieu differentialequation is the Modified Mathieudifferentialequationgivenby:- y =0, (1.2)dy 2du2 [a-2qcosh(2u)](u)whereu=ixissubstitutedintoequation(1.1).Thesubstitutionoft=cos(x)inthecanonicalMathieudifferentialequation(1.1)abovetransformstheequationintoitsalgebraicformasgivenbelow:(1-t) -t + y =0. (1.3) 2 dy 2dt2dydt[a+2q(1-2t2)](t)Thishastwosingularitiesatt=1,-1andoneirregularsingularityatinfinity,whichimpliesthatingeneral(un-likemanyotherspecialfunctions),thesolutionofMathieudifferentialequationcannotbeexpressedintermsofhypergeometricfunctions(Mritunjay2011).ThepurposeofthestudyistofacilitatetheunderstandingofsomeofthepropertiesofMathieufunctionsandtheirapplications.Webelievethatthisstudywillbehelpfulinachievingabettercomprehensionoftheirbasiccharacteristics.ThisstudyisalsointendedtoenlightenstudentsandresearcherswhoareunfamiliarwithMathieufunctions.Inthechaptertwoofthiswork,wediscussedtheMathieu3differentialequationandhowitarisesfromtheellipticalcoordinatesystem.Also,wetalkedabouttheModifiedMathieudifferentialequationandtheMathieudifferentialequationinanalgebraicform.ThechapterthreewasbasedonthesolutionstotheMathieuequationknownasMathieufunctionsandalsotheFloquet’stheory.Inthechapterfour,weshowedhowMathieufunctionscanbeappliedtodescribetheinvertedpendulum,ellipticdrumhead,Radiofrequencyquadrupole,Frequencymodulation,Stabilityofafloatingbody,AlternatingGradientFocusing,thePaultrapforchargedparticlesandtheQuantumPendulum.
[ad_2]
Purchase Detail
Hello, we’re glad you stopped by, you can download the complete project materials to this project with Abstract, Chapters 1 – 5, References and Appendix (Questionaire, Charts, etc) for N5000 ($15) only,
Please call 08111770269 or +2348059541956 to place an order or use the whatsapp button below to chat us up.
Bank details are stated below.
Bank: UBA
Account No: 1021412898
Account Name: Starnet Innovations Limited
The Blazingprojects Mobile App
Download and install the Blazingprojects Mobile App from Google Play to enjoy over 50,000 project topics and materials from 73 departments, completely offline (no internet needed) with the project topics updated Monthly, click here to install.
Recent Comments