[ad_1] 1.1BriefReviewonMathieuequation Mathieu equation isa specialcase of a linear second order homogeneousdifferentialequation(Ruby1995).Theequationwasfirstdiscussedin1868,byEmileLeonardMathieuinconnectionwithproblemofvibrationsinellipticalmembrane.HedevelopedtheleadingtermsoftheseriessolutionknownasMathieufunctionoftheellipticalmembranes.Adecadelater,HeinedefinedtheperiodicMathieuAngularFunctionsofintegerorderasFouriercosineandsineseries;furthermore,withoutevaluatingthecorrespondingcoefficient,Heobtainedatranscendentalequationforcharacteristicnumbersexpressedintermsofinfinitecontinuedfractions;andalsoshowedthatonesetofperiodicfunctionsofintegerordercouldbeinaseriesofBesselfunction(Chaos-CadorandLey-Koo2002).Intheearly1880’s,FloquetwentfurthertopublishatheoryandthusasolutiontotheMathieudifferentialequation;hisworkwasnamedafterhimas,‘Floquet’sTheorem’or‘Floquet’sSolution’.StephensonusedanapproximateMathieuequation,andproved,thatitispossibletostabilizetheupperpositionofarigidpendulumbyvibratingitspivotpointverticallyataspecifichighfrequency.(StépánandInsperger2003).Thereexistsanextensiveliteratureontheseequations;andinparticular,awell-highexhaustivecompendiumwasgivenbyMc-Lachlan(1947).TheMathieufunctionwasfurtherinvestigatedbynumberofresearcherswhofoundaconsiderableamountofmathematicalresultsthatwerecollectedmorethan60yearsagobyMc-Lachlan(Gutiérrez-Vegaaetal2002).Whittakerandotherscientistderivedin1900sderivedthehigher-ordertermsoftheMathieudifferentialequation.AvarietyoftheequationexistintextbookwrittenbyAbramowitzandStegun(1964).Mathieudifferentialequationoccursintwomaincategoriesofphysicalproblems.First,applicationsinvolvingellipticalgeometriessuchas,analysisofvibratingmodes2inellipticmembrane,thepropagatingmodesofellipticpipesandtheoscillationsofwaterinalakeofellipticshape.Mathieuequationarisesafterseparatingthewaveequation using ellipticcoordinates.Secondly,problemsinvolving periodicmotionexamplesare,thetrajectoryofan electron in aperiodicarrayofatoms,themechanicsofthequantumpendulumandtheoscillationoffloatingvessels.ThecanonicalformfortheMathieudifferentialequationisgivenby+ y =0, (1.1)dy 2dx2 [a-2qcos(2x)](x)whereaandqarerealconstantsknownasthecharacteristicvalueandparameterrespectively.Closely related to the Mathieu differentialequation is the Modified Mathieudifferentialequationgivenby:- y =0, (1.2)dy…
Read More
Recent Comments